Identification Identification of Signature Writing Using Convolutional Neural Network Algorithm
DOI:
https://doi.org/10.61255/decoding.v1i2.157Keywords:
Pattern Recognition, Computer Vision, Convolutional Neural Network, Identification, Signature, ImageAbstract
Signature is the outcome of a writing process with distinct characteristics, serving as one of the proofs of the validity of an agreement conducted by two or more parties as evidence of identity verification. This study aims to design a system capable of identifying an individual based on inputted signature images into the system. The rapid development of knowledge can certainly be leveraged to facilitate and address issues in human daily life, one of which is the application of expertise in the field of pattern recognition, enabling the creation of a signature identification system. There are five main stages employed in this research, namely image acquisition, image augmentation, system architecture design, training process, and testing process. The research results demonstrate that the applied method proves to be effective in designing a signature identification system. This is substantiated by the accuracy level of the system testing reaching 98.148%.
Abstract views: 201
,
PDF downloads: 279
Downloads
References
Octariadi, B. C. (2020). Pengenalan Pola Tanda Tangan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal Teknoinfo, 14(1), 15-21.
Septiarini, A. (2016). Pengenalan Pola Pada Citra Digital Dengan Fitur Momen Invariant. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 7(1), 8-11.
Putri. E. (2015). Sistem Identifikasi Tanda Tangan dengan Pendekatan Support Vector Machine. SITEKIN: Jurnal Sains, Teknologi dan Industri, 12(2), 225-231.
Harahap. M., Husein. A. M., & Dharma. A. (2017). Identifikasi Tanda Tangan Dengan Kohonen SOM berbasis Principal Component Analysis. In Seminar Nasional APTIKOM (SEMNASTIKOM) (Vol. 3, pp. 333-337).
Aristantya. R., Santoso. I., dan Zahra. A. A. (2018). Identifikasi Tanda Tangan Menggunakan Metode Zoning dan SVM (Support Vector Machine). Transient: Jurnal Ilmiah Teknik Elektro, 7(1), 174-178.
Pristanti. Y. D., Mudjirahardjo. P., & Basuki. A. (2019). Identifikasi Tanda Tangan dengan Ekstraksi Ciri GLCM dan LBP. Jurnal EECCIS, 13(1), 6-10.






Email: a.baso.kaswar@diginus.id